domingo, 15 de noviembre de 2015

Resolver el sistema de ecuaciones lineales

ENUNCIADO. Clasificar según la solución y resolver, si procede, el siguiente sistema de ecuaciones lineales, interpretando la ( posible ) solución desde el punto de vista geométrico:
$$\left.\begin{matrix}
3\,x &-&3\,y&+&z=&11 \\
2x &-&3\,y&+&2\,z=&9 \\
x &-&2\,y&+&4\,z=&3 \\
\end{matrix}\right\}$$


SOLUCIÓN
Mediante combinaciones lineales entre filas procederemos a obtener un sistema equivalente que tenga un escalonamiento de $0$s en los coeficientes de las ecuaciones ( del sistema reducido por Gauss ), que nos permitirá saber cuántas ecuaciones de las dadas son linealmente independientes ( rango del sistema ), viendo con ello si el sistema es incompatible ( no tiene solución ) o bien compatible ( tiene solución ), y en cuyo caso, si a cada variable le corresponde un sólo valor como solución ( compatible determinado ) o bien le corresponden infinitos valores, aunque con una cierta estructura que los liga ( sistema compatible indeterminado ). Finalmente, si procede encontraremos la solución.
Empecemos. A partir del sistema original
$$\left.\begin{matrix}
3\,x &-&3\,y&+&z=&11 \\
2x &-&3\,y&+&2\,z=&9 \\
x &-&2\,y&+&4\,z=&3 \\
\end{matrix}\right\}$$
y mediante las siguientes operaciones elementales entre ecuaciones
$$\left.\begin{matrix}
-2\,e_1+3\,e_2 \rightarrow e_2\\
-2\,e_3+3\,e_2 \rightarrow e_3\\
\end{matrix}\right.$$
obtenemos el siguiente sistema equivalente
$$\left.\begin{matrix}
3\,x &-&3\,y&+&z=&11 \\
&&-3\,y&+&4\,z=&5 \\
&&y&-&6\,z=&3 \\
\end{matrix}\right\} $$
que acabamos de escalonar haciendo
$$\left.\begin{matrix}
2\,e_3+e_2 \rightarrow e_3\\
\end{matrix}\right.$$
obteniendo
$$\left.\begin{matrix}
3\,x &-&3\,y&+&z=&11 \\
&&-3\,y&+&4\,z=&5 \\
&&&-&14\,z=&14 \\
\end{matrix}\right\} $$
sistema escalonado por Gauss que tiene $3$ ecuaciones linealmente independientes, luego el rango del sistema de ecuaciones es $3$; y, como el rango coincide con el número de incógnitas, el sistema es compatible determinado, por lo que la solución es única. Veamos cuál es. De la última ecuación, despejamos $z$ sin dificultad, obteniendo $z=-1$; sustituyendo dicho valor en la segunda ecuación del sistema reducido llegamos a $y=-3$. Y, finalmente, sustituyendo $z=-1$ e $y=-3$ en la primera ecuación y despejando la incógnita $x$ resulta $x=1$.
Y se comprueba fácilmente que la solución ( que representa un punto del espacio tridimensional ) satisface las tres igualdades originales.
$\square$

[autoría]