domingo, 4 de octubre de 2015

Discutir y resolver ...

ENUNCIADO. Resolver el sistema de ecuaciones dado por una única ecuación $$x-y+z=1$$

SOLUCIÓN. Como hay tres variables y el sistema consta de una sola ecuación, el sistema es compatible indeterminado, con $3-1=2$ variables secundarias. Elijamos tres de las variable como variables secundarias, pongamos que $y$ y $z$, denotándolas de la forma $\alpha:=y$ y $\beta:=z$, con lo cual podemos escribir $$x=1+\alpha-\beta$$ Como podemos dar valores arbitrarios ( infinitos valores ) a $\alpha$ y a $\beta$, describimos, pues, la solución como el conjunto de infinitas ternas de números reales dado por $$\{(1+\alpha-\beta,\alpha,\beta): \alpha,\beta \in \mathbb{R}\}$$ que interpretamos como puntos de un plano en el espacio tridimensional.

Nota: $\alpha$ y $\beta$ hacen el papel de parámetros en la estructura general de la solución. El que encontremos dos parámetros se corresponde con la noción ( geométrica ) de que un plano se entienda como un conjunto de puntos con dos grados de libertad, pues al imaginar que recorremos todos estos puntos podemos pensar que lo podemos hacer eligiendo dos direcciones básicas.
$\square$

[autoría]